Exploring a new way to teach robots, Princeton researchers have found that human-language descriptions of tools can accelerate the learning of a simulated robotic arm lifting and using a variety of tools.
research
-
-
A bird landing on a branch makes the maneuver look like the easiest thing in the world, but in fact, the act of perching involves an extremely delicate balance of timing, high-impact forces, speed, and precision. It’s a move so complex that no flapping-wing robot (ornithopter) has been able to master it, until now.
-
Researchers at Istituto Italiano di Tecnologia (IIT – Italian Institute of Technology) have recently realized a new prototype robotic platform for space applications. The new robot, called MARM, has three limbs that can be used to walk, move, grasp and transport payload modules while self-relocating itself on the space infrastructure under microgravity environment.
-
Inspired by the biomechanics of the manta ray, researchers at North Carolina State University have developed an energy-efficient soft robot that can swim more than four times faster than previous swimming soft robots. The robots are called “butterfly bots,” because their swimming motion resembles the way a person’s arms move when they are swimming the butterfly stroke.
-
A team of Penn Engineers has devised a new electrostatically controlled clutch which enables a soft robotic hand to be able to hold 4 pounds – about the weight of a bag of apples – which is 40 times more than the hand could lift without the clutch. In addition, the ability to perform this task requiring both a soft touch and strength was accomplished with only 125 volts of electricity, a third of the voltage required for current clutches.
-
Researchers at the University of Missouri are working to speed up the online delivery process by developing a software model designed to make “transport” robots smarter. In this system humans and robots work together to process online orders — real-life workers strategically positioned among their automated coworkers who are moving intelligently back and forth in a warehouse space, picking items for shipping to the customer.
-
Researchers at Carnegie Mellon University’s School of Computer Science and the University of California, Berkeley, have designed a robotic system that enables a low-cost and relatively small legged robot to climb and descend stairs nearly its height; traverse rocky, slippery, uneven, steep and varied terrain; walk across gaps; scale rocks and curbs; and even operate in the dark.
-
Beneath our streets lies a maze of pipes, conduits for water, sewage, and gas. Regular inspection of these pipes for leaks, or repair, normally requires these to be dug up. The latter is not only onerous and expensive – with an estimated annual cost of £5.5bn in the UK alone – but causes disruption to traffic as well as nuisance to people living nearby, not to mention damage to the environment.
-
Researchers at North Carolina State University have created a ring-shaped soft robot capable of crawling across surfaces when exposed to elevated temperatures or infrared light. The researchers have demonstrated that these “ringbots” are capable of pulling a small payload across the surface – in ambient air or under water, as well as passing through a gap that is narrower than its ring size.
-
Bots & BrainsInternational
Research: Mathematical formula tackles complex moral decision-making in AI
An interdisciplinary team of researchers has developed a blueprint for creating algorithms that more effectively incorporate ethical guidelines into artificial intelligence (AI) decision-making programs. The project was focused specifically on technologies in which humans interact with AI programs, such as virtual assistants or “carebots” used in healthcare settings.