Home Bots & Brains Research: AIoT Solutions Precursor to Next-Generation AI Decision as a Service

Research: AIoT Solutions Precursor to Next-Generation AI Decision as a Service

by Pieter Werner

The convergence of AI and Internet of Things (IoT) technologies and solutions (AIoT) is leading to “thinking” networks and systems that are becoming increasingly more capable of solving a wide range of problems across a diverse number of industry verticals. AI adds value to IoT through machine learning and improved decision-making. IoT adds value to AI through connectivity, signaling, and data exchange.

This is described extensively in ‘Artificial Intelligence of Things Solutions by AIoT Market Applications and Services in and Industry Verticals 2022 – 2027’ a report by ResearchAndMarkets.com.

This AIoT market report provides an analysis of technologies, leading companies and solutions. The report also provides quantitative analysis including market sizing and forecasts for AIoT infrastructure, services, and specific solutions for the period 2022 through 2027. The report also provides an assessment of the impact of 5G upon AIoT (and vice versa) as well as blockchain and specific solutions such as Data as a Service, Decisions as a Service, and the market for AIoT in smart cities.

While it is no secret that AI is rapidly becoming integrated into many aspects of ICT, many do not understand the full extent of how it will transform communications, applications, content, and commerce. For example, the use of AI for decision-making in IoT and data analytics will be crucial for efficient and effective smart city solutions in terms of decision-making.

AIoT is just beginning to become part of the ICT lexicon as the possibilities for the former adding value to the latter are only limited by the imagination. With AIoT, AI is embedded into infrastructure components, such as programs, chipsets and edge computing, all interconnected with IoT networks.APIs are then used to extend interoperability between components at the device level, software level and platform level. These units will focus primarily on optimizing system and network operations as well as extracting value from data.

While early AIoT solutions are rather monolithic, it is anticipated that AIoT integration within businesses and industries will ultimately lead to more sophisticated and valuable inter-business and cross-industry solutions. These solutions will focus primarily upon optimizing system and network operations as well as extracting value from industry data through dramatically improved analytics and decision-making processes.

Industry adoption for AIoT is gaining momentum. By way of example, Advantech partnered with Momenta Ventures to launch the AIoT Ecosystem Fund, a venture capital fund with a target of $50 million USD and a focus on the digital industry. KC Liu, CEO of Advantech, stated: “Advantech is committed to enabling an intelligent planet. This starts at the industrial edge with early innovators in energy, manufacturing, smart spaces and supply chain management.”

The company launched Advantech Industrial Wireless solutions with Qualcomm, NXP, DEKRA, and E Ink. “We provide AIW industrial grade wireless modules and wireless design-in services to embedded customers. This one-stop shopping service helps customers acquire leading wireless enabled AIoT products and reduce their time to market,” said Andy Lin, Advantech Senior ProductManager.

Many industry verticals will be transformed through AI integration with enterprise, industrial, and consumer product and service systems. It is destined to become an integral component of business operations including supply chains, sales and marketing processes, product and service delivery, and support models.

We see AIoT evolving to become more commonplace as a standard feature from big analytics companies in terms of digital transformation for the connected enterprise. This will be realized in infrastructure, software, andSaaS managed service offerings. Recent years have witnessed rapid growth for IoT data-as-a-service offerings to become AI-enabled decisions-as-a-service-solutions, customized on a per industry and company basis. Certain data-driven verticals such as the utility and energy service industries will lead the way.

As IoT networks proliferate throughout every major industry vertical, there will be an increasingly large amount of unstructured machine data. The growing amount of human-oriented and machine-generated data will drive substantial opportunities for AI support of unstructured data analytics solutions. Data generated from IoT-supported systems will become extremely valuable, both for internal corporate needs as well as for many customer-facing functions such as product life-cycle management.

The use of AI for decision-making in IoT and data analytics will be crucial for efficient and effective decision-making, especially in the area of streaming data and real-time analytics associated with edge computing networks. Real-time data will be a key value proposition for all use cases, segments, and solutions. The ability to capture streaming data, determine valuable attributes, and make decisions in real-time will add an entirely new dimension to service logic.

In many cases, the data itself, and actionable information will be the service. AIoT infrastructure and services will, therefore, be leveraged to achieve more efficient IoT operations, improve human-machine interactions, and enhance data management and analytics, creating a foundation for IoT Data as a Service (IoTDaaS) and AI-based Decisions as a Service.

The fastest-growing 5G AIoT applications involve private networks. Accordingly, the 5GNR market for private wireless in industrial automation will reach $5.21B by 2027. Some of the largest market opportunities will be AIoT market IoTDaaS solutions. We see machine learning in edge computing as the key to realizing the full potential of IoT analytics.


Misschien vind je deze berichten ook interessant